Find the Fourier coeffcients for this function Must be in MA
Find the Fourier coeffcients for this function. Must be in MATLAB code
Consider the periodic function f(t) = 1 - t^2, - 1 lessthanorequalto t lessthanorequalto 1, T = 2 Find the Fourier coefficients for this function. Plot the function and its Fourier approximation between t = -2 and f = 2. For the Fourier approximation, use K = 5, 11 and 51. How many terms in the Fourier series are required for good resolution of the function?Solution
clear all, close all, clc
 syms A0 Ak Bk Ck dt fn k t T0 W0 Y % declaring variables
 %DEFINE FUNCTION
 % fn=t;
 %FIND FOURIER COEF\'s
 W0=1; %define W0=1 fundamental frequency
 T0=(2*pi); %Period of the function
 AK=(2/T0)*int(t*cos(k*t*W0),t,-(T0/2),(T0/2));
 BK=((2/T0)*int(t*(sin(k*t*W0)),t,-(T0/2),(T0/2)));
 CK=(1/T0)*int(t*exp(-j*k*W0*t),t,-(T0/2),(T0/2));
 %SIMPLIFY THE COEF\'s
 Ak=simplify (AK)
 Bk= round(BK)
 Ck=simplify (CK)
 %INITIALIZE VARIABLES
 dt=T0/100;
 %CALCULATE A0
 A0=(1/T0)*int(t),t,-(T0/2),(T0/2);
 t=[-pi:dt:pi]; %the variable limits and resolution
 Y=zeros(size(t));
 %PLOT FUNCTION
     for k=[1:2:21];
         y=A0/2+Ak*cos(k*t*W0)+Bk*sin(k*t*W0);
          %double(y);
         %EZPLOT(y);
 % Y=Y+y
     end
 
 %plot(t,Y,\'LineWidth\',2);
 axis([-4 4 -4 4]);
 grid;
 xlabel(\'time, s\');
 ylabel(\'f(t), (V)\');

