We want to price options using the binomial lattice The curr
We want to price options using the binomial lattice. The current stock price is 54 and the strike price is 50. Assume that the stock up-trend rate is u = 1.2 with probability p = 0.4 and the down-trend rate is d = 0.8 with probability 1 p = 0.6. The annual risk-free rate is r = 0.005. Assume that the length of a period is one month.
1. Construct a binomial lattice that show the evolution of the stock price during the 5 months.
2. Construct a binomial lattice that gives the price of a 5-month European call option.
3. Construct a binomial lattice that gives the price of a 5-month American put option.
Solution
Stock Price
54
0
1
2
3
4
5
pay off
Strike
50
u
1.2
134.364
0
d
0.8
111.972
p
0.4
93.312
89.576
0
r
0.005
77.76
74.648
64.8
62.208
59.72
0
Stock Price
54
51.84
49.768
43.2
41.472
39.816
14.184
34.56
33.176
27.648
26.544
27.456
19.72
15.776
38.224
American Put:
Let Vs,t be the option value when stock price is s at time t.
Vs,t = (p*s*u+(1-p)*s*d)*exp(-r*t)
t = 1/5 = 0.2
0
0
0
0
30.4821
0
73.09854
50.88491
0
option price
118.4966
101.705
8.494398
149.0782
135.8558
14.18
181.058
22.11259
211.6767
27.46
33.86178
38.22
| Stock Price | 54 | 0 | 1 | 2 | 3 | 4 | 5 | pay off | ||
| Strike | 50 | |||||||||
| u | 1.2 | 134.364 | 0 | |||||||
| d | 0.8 | 111.972 | ||||||||
| p | 0.4 | 93.312 | 89.576 | 0 | ||||||
| r | 0.005 | 77.76 | 74.648 | |||||||
| 64.8 | 62.208 | 59.72 | 0 | |||||||
| Stock Price | 54 | 51.84 | 49.768 | |||||||
| 43.2 | 41.472 | 39.816 | 14.184 | |||||||
| 34.56 | 33.176 | |||||||||
| 27.648 | 26.544 | 27.456 | ||||||||
| 19.72 | ||||||||||
| 15.776 | 38.224 | |||||||||



