solve the equation giving the exact solutions which lie in 0
solve the equation, giving the exact solutions which lie in [0, 2)
A) sin(2x) = tan(x)
B) sin(x) + 3 cos(x) = 1
C) cos(3x) = cos(5x)
Solution
a) sin2x = tanx
2sinxcosx = sinx/cosx
sinx gets cancelled out
2cosx = 1/cosx
2cos^2x =1
2cos^2x -1 =0
(sqrt2cosx+1)(sqrt2cosx -1) =0
cosx = -1/sqrt2
x = pi -pi/4 , pi +pi/4
x = 3pi/4 , 5pi/4
cosx = 1/sqrt2
x = pi/4 , 2pi -pi/4
= pi/4 , 7pi/4
x = pi/4 , 3pi/4 , 5pi/4 , 7pi/4
b) sinx + sqrt3cosx =1
sinx = 1- sqrt3cosx
square both sides:
sin^2x = ( 1- sqrt3cosx)^2
(1- cos^2x ) - ( 1- sqrt3cosx)^2 =0
-4cos^2x + 2cosx*sqrt3=0
solve the quadratic:
cosx =0 ; cosx = sqrt3/2
x =pi/2 , 11pi/6
c) cos(3x) = cos(5x)
cos(3x ) - cos(5x) =0
use formula: cosA - cosB = -2sin(A+B)/2sin(A -B)/2
cos(3x ) - cos(5x) = 2sin(4x)sinx
2sin4xsinx =0
sin4x =0
x= 0 ,pi/4, pi/4 , 3pi/4, pi , 5pi/4 , 3pi/2 , 7pi/4 , 2pi
sinx =0
x = 0 , pi , 2pi
combining the two results : x= 0 ,pi/4, pi/4 , 3pi/4, pi , 5pi/4 , 3pi/2 , 7pi/4 , 2pi


