An assembly consists of three components placed side by side
An assembly consists of three components placed side by side. The length of each component is normally distributed with mean 2 inches and standard deviation 0.2 inch. Specifications require that all assemblies are between 5.7 and 6.3 inches long. How many assembles will pass these requirements?
Solution
A.
The mean sum of their lengths must then be
M(tot) = m1 + m2 + m3 = 2 + 2 + 2 = 6 in
And the standard deviation of their sum is
s(tot) = sqrt(s1^2 + s2^2 + s3^2) = sqrt(0.2^2 + 0.2^2 + 0.2^2) = 0.34641 in
We first get the z score for the two values. As z = (x - u) sqrt(n) / s, then as          
 x1 = lower bound =    5.7      
 x2 = upper bound =    6.3      
 u = mean =    6      
 n = sample size =    1 [only one assembly]      
 s = standard deviation =    0.34641      
           
 Thus, the two z scores are          
           
 z1 = lower z score =    -0.866025808      
 z2 = upper z score =    0.866025808      
           
 Using table/technology, the left tailed areas between these z scores is          
           
 P(z < z1) =    0.193238005      
 P(z < z2) =    0.806761995      
           
 Thus, the area between them, by subtracting these areas, is          
           
 P(z1 < z < z2) =    0.61352399 of assemblies, or approx. 61.352% of them. [ANSWER]

