Last year the typical college student graduated with 27600 i
Last year, the typical college student graduated with $27,600 in debt (The Boston Globe, May 27, 2012). Let debt among recent college graduates be normally distributed with a standard deviation of $8,000. Use Table 1.
What is the probability that the average debt of five recent college graduates is more than $20,000? (Round intermediate calculations to 4 decimal places, “z” value to 2 decimal places, and final answer to 4 decimal places.)
What is the probability that the average debt of five recent college graduates is more than $25,000? (Round intermediate calculations to 4 decimal places, “z” value to 2 decimal places, and final answer to 4 decimal places.)
| Last year, the typical college student graduated with $27,600 in debt (The Boston Globe, May 27, 2012). Let debt among recent college graduates be normally distributed with a standard deviation of $8,000. Use Table 1. | 
Solution
A)
We first get the z score for the critical value. As z = (x - u) sqrt(n) / s, then as          
           
 x = critical value =    20000      
 u = mean =    27600      
 n = sample size =    5      
 s = standard deviation =    8000      
           
 Thus,          
           
 z = (x - u) * sqrt(n) / s =    -2.12      
           
 Thus, using a table/technology, the right tailed area of this is          
           
 P(z >   -2.12   ) =    0.982996977 [ANSWER]
***************
b)
We first get the z score for the critical value. As z = (x - u) sqrt(n) / s, then as          
           
 x = critical value =    25000      
 u = mean =    27600      
 n = sample size =    5      
 s = standard deviation =    8000      
           
 Thus,          
           
 z = (x - u) * sqrt(n) / s =    -0.73      
           
 Thus, using a table/technology, the right tailed area of this is          
           
 P(z >   -0.73   ) =    0.767304908 [ANSWER]
****************

