Find all the local maxima local minima and saddle points of

Find all the local maxima, local minima, and saddle points of the function f(x, y) = x^3 + y^3 + 3x^2 - 6y^2 - 2 Select the correct choice below and. if necessary, fill in the answer boxes to complete your choice A local maximum occurs at (Type an ordered pair Use a comma to separate answers as needed) The local maximum value(s) is/are (Type an exact answer Use a comma to separate answers as needed) There are no local maxima

Solution

fx = 3x2 + 6x fxx = 6x + 6 = 6(x + 1)

fy = 3y2 - 12y fyy = 6y - 12 = 6(y - 2)

fxy = fyx = 0

Equating fx and fy equals to zero

fx = 0 3x2 + 6x = 0 x = 0 or -2

fy = 0 3y2 - 12y = 0 y = 0 or 4

Critical Points : ( 0 , 0 ) ; ( 0 , 4 ) ; ( -2 , 0 ) ; ( -2 , 4 )

Calculating

fxx . fyy - fxy2 = 36 ( x + 1 ) ( y - 2 )

At ( 0 , 0 )

fxx . fyy - fxy2 < 0 Saddle Point

At ( 0 , 4 )

fxx . fyy - fxy2 > 0 Maxima/Minima

fxx > 0 and fyy > 0 Minima

At ( -2 , 0 )

fxx . fyy - fxy2 > 0 Maxima/Minima

fxx < 0 and fyy < 0 Maxima

At ( -2 , 4 )

fxx . fyy - fxy2 < 0 Saddle Point

 Find all the local maxima, local minima, and saddle points of the function f(x, y) = x^3 + y^3 + 3x^2 - 6y^2 - 2 Select the correct choice below and. if necess

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site