Find all the local maxima local minima and saddle points of
     Find all the local maxima, local minima, and saddle points of the function  f(x, y) = x^3 + y^3 + 3x^2 - 6y^2 - 2  Select the correct choice below and. if necessary, fill in the answer boxes to complete your choice  A local maximum occurs at  (Type an ordered pair Use a comma to separate answers as needed)  The local maximum value(s) is/are  (Type an exact answer Use a comma to separate answers as needed)  There are no local maxima 
  
  Solution
fx = 3x2 + 6x fxx = 6x + 6 = 6(x + 1)
fy = 3y2 - 12y fyy = 6y - 12 = 6(y - 2)
fxy = fyx = 0
Equating fx and fy equals to zero
fx = 0 3x2 + 6x = 0 x = 0 or -2
fy = 0 3y2 - 12y = 0 y = 0 or 4
Critical Points : ( 0 , 0 ) ; ( 0 , 4 ) ; ( -2 , 0 ) ; ( -2 , 4 )
Calculating
fxx . fyy - fxy2 = 36 ( x + 1 ) ( y - 2 )
At ( 0 , 0 )
fxx . fyy - fxy2 < 0 Saddle Point
At ( 0 , 4 )
fxx . fyy - fxy2 > 0 Maxima/Minima
fxx > 0 and fyy > 0 Minima
At ( -2 , 0 )
fxx . fyy - fxy2 > 0 Maxima/Minima
fxx < 0 and fyy < 0 Maxima
At ( -2 , 4 )
fxx . fyy - fxy2 < 0 Saddle Point

