Continuous Random Variables we are working with commonly use
Continuous Random Variables
we are working with commonly used discrete and continuous distribution
2-table practice: use the 2-table in the last page, find the following probabilities (Z is a standard normal random variable):find the value of 2 that satisfies the following probabilitiesSolution
Q1.
 a)
 To find P(a < = Z < = b) = F(b) - F(a)
 P(X < -0.37) = (-0.37-0)/1
 = -0.37/1 = -0.37
 = P ( Z <-0.37) From Standard Normal Table
 = 0.35569
 P(X < 0.67) = (0.67-0)/1
 = 0.67/1 = 0.67
 = P ( Z <0.67) From Standard Normal Table
 = 0.74857
 P(-0.37 < X < 0.67) = 0.74857-0.35569 = 0.3929                  
 b)
 To find P(a < = Z < = b) = F(b) - F(a)
 P(X < 0.15) = (0.15-0)/1
 = 0.15/1 = 0.15
 = P ( Z <0.15) From Standard Normal Table
 = 0.55962
 P(X < 2.33) = (2.33-0)/1
 = 2.33/1 = 2.33
 = P ( Z <2.33) From Standard Normal Table
 = 0.9901
 P(0.15 < X < 2.33) = 0.9901-0.55962 = 0.4305                  
 c)
 P(X < 1.96) = (1.96-0)/1
 = 1.96/1= 1.96
 = P ( Z <1.96) From Standard Normal Table
 = 0.975                  
 P(X > = 1.96) = (1 - P(X < 1.96)
 = 1 - 0.975 = 0.025                  
Q2.
 a)
 P ( Z < x ) = 0.9115
 Value of z to the cumulative probability of 0.9115 from normal table is 1.35
 P( x-u/s.d < x - 0/1 ) = 0.9115
 That is, ( x - 0/1 ) = 1.35
 --> x = 1.35 * 1 + 0 = 1.35                  
 b)
 P ( Z < x ) = 0.0287
 Value of z to the cumulative probability of 0.0287 from normal table is -1.9
 P( x-u/s.d < x - 0/1 ) = 0.0287
 That is, ( x - 0/1 ) = -1.9
 --> x = -1.9 * 1 + 0 = -1.9                  

