Find the value of the probability of the standard normal var
Find the value of the probability of the standard normal variable Z corresponding to this area for problems 1-3.
1. (Z < 0.58)
 a. 0.8962
 b. 0.7190
 c. 0.1317
 d. 0.7489
 e. 0.5412
2. P ( Z> ?1.07)
 a. 0.0582
 b. 0.7612
 c. 0.1978
 d. 0.8577
 e. 0.3578
3. P(Z?0.14 < < 1.63)
 a. 0.5041
 b. 0.6531
 c. 0.8714
 d. 0.6406
 e. 0.8012
Let Z be the standard normal variable. Find the values of z if z satisfies the following problems 4-6
4.  P( Z< z ) = 0.9251
 a. -0.57
 b. 0.98
 c. 0.37
 d. 1.44
 e. -1.16
5.P(Z > ?z) = 0.3372
 a. -0.42
 b. 0.43
 c. -0.21
 d. 0.78
 e. -056.
6. (?z < Z <z ) = 0.8882
 a. 1.81
 b. 1.59
 c. 1.04
 d. 1.44
 e. 1.68
An explanation of how you got the answer would be much appreicated!
Solution
From:
STANDARD NORMAL DISTRIBUTION: Table Values Represent AREA to the LEFT of the Z score.
1. (Z < 0.58)
    answer is: b) 0.7190
2. P ( Z> ?1.07)
p(Z > 1.12) = 1 - p(Z < 1.07)
                         = 1-0.8577=0.1423 this is not accepting so
    ansrer is: d) 0.8577
3. P(Z?0.14 < < 1.63)
 a. 0.5041
 b. 0.6531
 c. 0.8714
 d. 0.6406
 e. 0.8012  
find p(Z < 0.14) - p(Z < 1.63).
4.  P( Z< z ) = 0.9251
 answer is d) 1.44 from   cumulative Probabilities of the Standard Normal Distribution N(0, 1)
5.P(Z > ?z) = 0.3372
 answer is:a) -0.42 from    Cumulative Probabilities of the Standard Normal Distribution N(0, 1)
   6. (?z < Z <z ) = 0.8882
    answer is:e. 1.68
z=1.8882/2=0.4442


