Scores on the SAT Mathematics test SATM are believed to be n
Scores on the SAT Mathematics test (SAT-M) are believed to be normally distributed with mean . The scores of a random sample of seven students who recently took the exam are 550, 620, 480, 570, 690, 750, and 500. A 90% confidence interval for based on these data is:
A. (521.73, 666.85).
B. (532.86, 655.71).
C. (566.86, 621.71).
D. (502.91, 685.67).
| A. (521.73, 666.85). | |
| B. (532.86, 655.71). | |
| C. (566.86, 621.71). | |
| D. (502.91, 685.67). | 
Solution
a)
Note that              
               
 Lower Bound = X - t(alpha/2) * s / sqrt(n)              
 Upper Bound = X + t(alpha/2) * s / sqrt(n)              
               
 where              
 alpha/2 = (1 - confidence level)/2 =    0.05          
 X = sample mean =    594.2857143          
 t(alpha/2) = critical t for the confidence interval =    1.943180281          
 s = sample standard deviation =    98.80235201          
 n = sample size =    7          
 df = n - 1 =    6          
 Thus,              
               
 Lower bound =    521.73          
 Upper bound =    666.85          
               
 Thus, the confidence interval is              
               
 (   521.73   ,   666.85   ) [ANSWER, A]

