Let f be a continuous onetoone function defined on an interv

Let f be a continuous, one-to-one function defined on an interval [a, b] with f(a) < f(b). Show that for all x, y [a, b] if x < y, then f(x) < f(y).

Solution

Let f(x)=x^2 interval [a, b]

            [a^2,b^2]

    and x, y [a, b] if x < y,

            this like x=a; y=b

               so that from f(a) < f(b).

                       x < y then f(x) < f(y).

                  

  

   

Let f be a continuous, one-to-one function defined on an interval [a, b] with f(a) < f(b). Show that for all x, y [a, b] if x < y, then f(x) < f(y).Sol

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site