Show work please In efforts at investigating the cotinine le
Show work please
In efforts at investigating the cotinine levels of smokers, 40 smokers were surveyed who illustrated a mean level of cotinine concentration of 172.5 mg/ml. In this case the population standard deviation s is given as 119.5 mg/ml. ( 44 points )
Employ a 0.01 significance level in order to test the claim that the mean cotinine level of all smokers is 200.0 mg/ml.
Find the associated CI for (2)(a) above.
Find the probability from the P-value for (2)(a) above.
Employ a 0.05 significance level in order to test the claim that the mean cotinine level of all smokers is 152 mg/ml.
Find the associated CI for (2)(d) above.
Find the probability from the P-value for (2)(d) above.
Solution
a)
Formulating the null and alternative hypotheses,              
               
 Ho:   u   =   200  
 Ha:    u   =/   200  
               
 As we can see, this is a    two   tailed test.      
               
 Thus, getting the critical z, as alpha =    0.01   ,      
 alpha/2 =    0.005          
 zcrit =    +/-   2.575829304      
               
 Getting the test statistic, as              
               
 X = sample mean =    172.5          
 uo = hypothesized mean =    200          
 n = sample size =    40          
 s = standard deviation =    119.5          
               
 Thus, z = (X - uo) * sqrt(n) / s =    -1.455441601          
               
 Also, the p value is              
               
 p =    0.145547047          
               
 As |z| < 2.576, and P > 0.01, we   FAIL TO REJECT THE NULL HYPOTHESIS.          
Thus, there is no significant evidence that the mean cotinine level of all smokers is not 200.0 mg/ml. [CONCLUSION]
*********************
b)
Note that              
 Margin of Error E = z(alpha/2) * s / sqrt(n)              
 Lower Bound = X - z(alpha/2) * s / sqrt(n)              
 Upper Bound = X + z(alpha/2) * s / sqrt(n)              
               
 where              
 alpha/2 = (1 - confidence level)/2 =    0.005          
 X = sample mean =    172.5          
 z(alpha/2) = critical z for the confidence interval =    2.575829304          
 s = sample standard deviation =    119.5          
 n = sample size =    40          
               
 Thus,              
 Margin of Error E =    48.66928759          
 Lower bound =    123.8307124          
 Upper bound =    221.1692876          
               
 Thus, the confidence interval is              
               
 (   123.8307124   ,   221.1692876   ) [ANSWER]
*********************
c)
As we said in part a,
p = 0.145547047 [ANSWER]
**********************
*******************************************
Hi! Please submit the next part as a separate question. That way we can continue helping you! Please indicate which parts are not yet solved when you submit. Thanks!


