Show work please In efforts at investigating the cotinine le

Show work please

In efforts at investigating the cotinine levels of smokers, 40 smokers were surveyed who illustrated a mean level of cotinine concentration of 172.5 mg/ml. In this case the population standard deviation s is given as 119.5 mg/ml. ( 44 points )

Employ a 0.01 significance level in order to test the claim that the mean cotinine level of all smokers is 200.0 mg/ml.

Find the associated CI for (2)(a) above.

Find the probability from the P-value for (2)(a) above.

Employ a 0.05 significance level in order to test the claim that the mean cotinine level of all smokers is 152 mg/ml.

Find the associated CI for (2)(d) above.

Find the probability from the P-value for (2)(d) above.

Solution

a)

Formulating the null and alternative hypotheses,              
              
Ho:   u   =   200  
Ha:    u   =/   200  
              
As we can see, this is a    two   tailed test.      
              
Thus, getting the critical z, as alpha =    0.01   ,      
alpha/2 =    0.005          
zcrit =    +/-   2.575829304      
              
Getting the test statistic, as              
              
X = sample mean =    172.5          
uo = hypothesized mean =    200          
n = sample size =    40          
s = standard deviation =    119.5          
              
Thus, z = (X - uo) * sqrt(n) / s =    -1.455441601          
              
Also, the p value is              
              
p =    0.145547047          
              
As |z| < 2.576, and P > 0.01, we   FAIL TO REJECT THE NULL HYPOTHESIS.          

Thus, there is no significant evidence that the mean cotinine level of all smokers is not 200.0 mg/ml. [CONCLUSION]

*********************

b)

Note that              
Margin of Error E = z(alpha/2) * s / sqrt(n)              
Lower Bound = X - z(alpha/2) * s / sqrt(n)              
Upper Bound = X + z(alpha/2) * s / sqrt(n)              
              
where              
alpha/2 = (1 - confidence level)/2 =    0.005          
X = sample mean =    172.5          
z(alpha/2) = critical z for the confidence interval =    2.575829304          
s = sample standard deviation =    119.5          
n = sample size =    40          
              
Thus,              
Margin of Error E =    48.66928759          
Lower bound =    123.8307124          
Upper bound =    221.1692876          
              
Thus, the confidence interval is              
              
(   123.8307124   ,   221.1692876   ) [ANSWER]

*********************

c)

As we said in part a,

p =    0.145547047   [ANSWER]

**********************

*******************************************

Hi! Please submit the next part as a separate question. That way we can continue helping you! Please indicate which parts are not yet solved when you submit. Thanks!

         

Show work please In efforts at investigating the cotinine levels of smokers, 40 smokers were surveyed who illustrated a mean level of cotinine concentration of
Show work please In efforts at investigating the cotinine levels of smokers, 40 smokers were surveyed who illustrated a mean level of cotinine concentration of

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site