Determine whether the given set of functions is linearly ind
Determine whether the given set of functions is linearly independent on the interval (,).
(a) f1(x) = sin x, f2(x) = 0, f3(x) = ln x
(b) f1(x) = 3, f2(x) = sin^2 (x), f3(x) = cos^2 (x)
(c) f1(x) = 1 + x, f2(x) = 2x, f3(x) = x^2
Answers:
(a) linearly dependent ((0)f1 + (1)f2 + (0)f3 = 0)
(b) linearly dependent ((1/3)f1 + (1)f2 + (-1)f3 = 0)
(c) linearly independent
Solution
a)
Linearly dependent because
0*sin(x)+c*0+0*ln x=0
for any non zero real number c
b)
We have the identity:
sin^2(x)+cos^2(x)=1
Hence,
3+3*(-sin^2(x))-3 cos^2(x)=3-3(sin^2(x)+cos^2(x))=3-3=0
Hence linearly dependent
c)
Let, a,b,c so that
af1+bf2+cf3=0
a(1+x)+2bx+cx^2=0
Hence, c=0
a=0
a+2b=0 hence, b=0
Hence set is linearly independent.
