Do not round intermediate calculations however for display p
Solution
>> About Center Point, Iz = Moment of Inertia of cylinder rod = MR2/2
Now, Mass, M = Volume, V * Density
As Density = 7200 Kg-m3
and, Volume of big Cylinder = pi*R2*h = pi*442*22 = 1.338*10-4 m3
So, Mass, M = 1.338*10-4*7200 = 0.963 Kg
Now, Volume of cylindrical Hole, V2 = pi*R\'2*h = pi*62*22 = 2.488*10-6 m3
So, Mass of Hole, M2 = V2*7200 = 0.0179 Kg
>> Volume of Shaft BC, V3 = pi*R\"2*h\" = pi*32*50 = 1.4137*10-6 m3
So, Mass of Shaft BC, M3 = V3*7200 = 0.0102 Kg
>> So, Moment of Inertia of Cylinder With Hole = I1 - I2
I1 = Inertia of whole Cylinder about z-axis = MR2/2 + M*272 = 1.634*10-3 Kg-m2
I2 = Inertia of Cylindrical Hole about z-axis = M2*R\'2/2 + M2*(27+ 22)2 = 4.33*10-5 Kg-m2
So, Inertia of cylinder = 1.59*10-3 Kg-m2
As, I3 = Inertia of Shaft BC = M3*R\"2/2 = 4.59*10-8 Kg-m2
So, Final Inertia = 1.59*10-3 + 4.59*10-8 = 1.59*10-3 Kg-m2

