Suppose we toss a fair coin 200 times Fill in the blanks Use
Suppose we toss a fair coin 200 times. Fill in the blanks: Use the Normal approximation to find the probability that the sample proportion is A) Between 0.4 and 0.6 is _____ (Give your answer to 4 decimal places). B) Between 0.45 and 0.55 is _____ (Give your answer to 4 decimal places).
Solution
Here, the mean proportion is
u = p = 0.5
and the standard deviation of the proportion is
sigma = sqrt(p(1-p)/n) = sqrt(0.5*(1-0.05)/200) = 0.048733972
a)
We first get the z score for the two values. As z = (x - u) / s, then as          
 x1 = lower bound =    0.4      
 x2 = upper bound =    0.6      
 u = mean =    0.5      
           
 s = standard deviation =    0.048733972      
           
 Thus, the two z scores are          
           
 z1 = lower z score = (x1 - u)/s =    -2.051956693      
 z2 = upper z score = (x2 - u) / s =    2.051956693      
           
 Using table/technology, the left tailed areas between these z scores is          
           
 P(z < z1) =    0.020086936      
 P(z < z2) =    0.979913064      
           
 Thus, the area between them, by subtracting these areas, is          
           
 P(z1 < z < z2) =    0.959826129   [ANSWER]
***********************
b)
We first get the z score for the two values. As z = (x - u) / s, then as          
 x1 = lower bound =    0.45      
 x2 = upper bound =    0.55      
 u = mean =    0.5      
           
 s = standard deviation =    0.048733972      
           
 Thus, the two z scores are          
           
 z1 = lower z score = (x1 - u)/s =    -1.025978346      
 z2 = upper z score = (x2 - u) / s =    1.025978346      
           
 Using table/technology, the left tailed areas between these z scores is          
           
 P(z < z1) =    0.152450895      
 P(z < z2) =    0.847549105      
           
 Thus, the area between them, by subtracting these areas, is          
           
 P(z1 < z < z2) =    0.695098209   [ANSWER]  
   


