I dont understand this 2 parts Please show me how do you sol
I dont understand this 2 parts.. Please show me how do you solve this and inlcude your answer to these both parts.. Thank you!
Solution
(a) C={ f(x) P : f \'(0)=0}
example: let f(x) = 2x2 ...[ because f \' (x) = 4x => f \' (0) = 0]
OR f(x) = 2x3-3x2
D={ f(x) P | f(0) = 0} : example f(x) = 2x OR f(x)= 2x3-3x
E= { f(x)=a0 | a0 R} : example f(x) = 2 , f(x) = 3
F= { f(x) P | f(0)=f(1)=f(2)=0} : example f(x) = (x-2)(x-1)x ; f(x) = (x-2)(x-1)x2
G= {f(x) P | f \'\'(0) = f \'(0)=0}: example f(x)= 2x3 ... [ because f \'(x)= 6x2 and f \'\'(x)= 12x => f \'\'(0)=f \'(0)=0]
also f(x) = 3x4-2x3 G
(b) iii) C E : False
C={ f(x) P : f \'(0)=0} & E= { f(x)=a0 | a0 R}
since f(x) = 2x2 C but it does not belong in E.
iv) E C : True
let f(x) E => f(x) = a0 for some a0 R
=> f \'(x)=0 for all x . therefore in particular, f \' (0) =0
=>f(x) C.
v) C F : False
F= { f(x) P | f(0)=f(1)=f(2)=0} and C={ f(x) P : f \'(0)=0}
let f(x)= 2x2 . then f(x) C
but f(x) F [ because f(1)= 2]
vi) F C : False
f(x) = x(x-1)(x-2) F
=> f(x) = x( x2-3x+2) = x3-3x2+2x ( on simplifying)
=> f \'(x) = 3x2-6x+2
but f \'(0) 0 . therefore f(x) C.
vi) D F : False
D={ f(x) P | f(0) = 0} and F= { f(x) P | f(0)=f(1)=f(2)=0}
since f(x) = 2x2-x D
but f(x) F [ because f(1) = 1]
xii) F D: true
since if f(x) F => f(0)=f(1)=f(2)=0
=> f(x) D [ we need only f(0)= 0 for it to belong in D & clearly f satisfies it ]
xvii) E G : true
E= { f(x)=a0 | a0 R} and G= {f(x) P | f \'\'(0) = f \'(0)=0}
let f(x) E => f(x) = a0 for some a0 R
=> f \'(x)=0 for all x . therefore in particular, f \' (0) =0
Also, f \'\'(x) = 0 for all x, in particular true for x=0
=> f(x) G.
xviii) G E : False
f(x) = 2x3 G
but f(x) E [ since 2x3 is not constant]

