Just before a referendum on a school budget a local newspape
Just before a referendum on a school budget, a local newspaper 427 voters to predict whether the budget will pass. Suppose the budget has the support of 52% of the voters. What is the probability that the newspapers sample will lead it to predict defeat?
Solution
The standard deviation of the sampling distirbution of p^ is
s(p^) = sqrt(p(1-p)/n) = sqrt(0.52*(1-0.52)/427) = 0.024177331
Predicting defeat means less than 0.50 of voters.
We first get the z score for the critical value. As z = (x - u) / s, then as          
           
 x = critical value =    0.5      
 u = mean =    0.52      
           
 s = standard deviation =    0.024177331      
           
 Thus,          
           
 z = (x - u) / s =    -0.827221168      
           
 Thus, using a table/technology, the left tailed area of this is          
           
 P(z <   -0.827221168   ) =    0.204055858 [ANSWER]

