let Xn

let Xn <Yn for each n in N. Show that liminf Xn<liminf Yn and limsup Xn<limsup Yn.

Solution

Since an bn for all n, it follows that

xn := sup{an, an+1, . . .} yn := sup{bn, bn+1, . . .}

so that

limsup an = lim xn lim yn = limsup bn.

Similarly

xn := inf{an, an+1, . . .} yn := inf{bn, bn+1, . . .}

so that

liminf an = lim xn lim yn = liminf bn

let Xn <Yn for each n in N. Show that liminf Xn<liminf Yn and limsup Xn<limsup Yn.SolutionSince an bn for all n, it follows that xn := sup{an, an+1, .

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site