Verified the following trig identities and show all work csc
Verified the following trig identities and show all work.
csc4 t-cot4 t = csc2t+cot2 t
cosB/1-sinB = secB+tanB
1/csc y-cot y = csc y + cot y
Cot 4u-1/cot 4u+1 = 1-tan 4u/1+tan 4u
(sec t + tan t)2 = 1+sin t / 1-sin t
Cos3x –sin3x /cos x-sin x = 1+sin x cos x
Csc x /1+csc x – csc x/ 1-csc x= 2sec2 x
(1-tan2 theta)2 = sec4 theta – 4 tan2 theta
Solution
1)csc4t-cot4t
a2-b2=(a-b)(a+b)
=(csc2t-cot2t)(csc2t+cot2t)
=1*(csc2t+cot2t)
=csc2t+cot2t
2)cosB/1-sinB
multiply and divide by (1+sinB)
=cosB(1+sinB)/((1-sinB)(1+sinB))
=cosB(1+sinB)/(1-sin2B)
=cosB(1+sinB)/(cos2B)
=(1+sinB)/cosB
=(1/cosB)+(sinB/cosB)
=secB+tanB

