Consider the data on new orders for computers and electronic

Consider the data on new orders for computers and electronic products and the M1 money supply for the years 2011 through 2014.

Year

Month

New Orders for Computers and Electronic Products

M-1 Money Supply

2011

1

19222

1855.6

2011

2

20727

1874.7

2011

3

24893

1892.0

2011

4

19375

1897.8

2011

5

20152

1934.3

2011

6

25075

1947.0

2011

7

18615

2001.5

2011

8

21289

2112.9

2011

9

27014

2126.0

2011

10

22179

2137.4

2011

11

20761

2172.0

2011

12

27818

2168.2

2012

1

19447

2202.3

2012

2

23043

2212.2

2012

3

26734

2228.7

2012

4

21897

2245.3

2012

5

22403

2251.0

2012

6

24942

2262.3

2012

7

19365

2314.6

2012

8

20240

2346.5

2012

9

25478

2383.6

2012

10

20790

2415.5

2012

11

20362

2423.2

2012

12

27841

2457.7

2013

1

17393

2467.6

2013

2

18725

2470.4

2013

3

22919

2474.8

2013

4

19560

2511.0

2013

5

20333

2522.0

2013

6

24619

2517.9

2013

7

18065

2545.6

2013

8

18487

2557.3

2013

9

24877

2578.8

2013

10

20410

2620.2

2013

11

20194

2622.2

2013

12

24955

2654.5

Using the data for computer and electronic products, develop a two-period MA(2), four-period MA(4), and six-period MA(6) moving average forecasts.

Using the same data, develop a weighted moving average forecast where the weight of the most recent data (t-1) is 0.50, 0.25 for period (t-2), 0.15 for period (t-3), and 0.10 for period (t-4).

Using the same data, develop exponential smoothing forecasts with an alpha () of 0.85 and 0.15. Assume the first month forecast is the same as the actual data.

Using the same data, develop a time-series trend forecast using regression analysis.

Using the same data, develop a causal model forecast using the M1 Money Supply data as the independent variable.

Using either MSE or MAD, determine which forecast is best.

Develop a time series decomposition forecast for the computer and electronic products. You must first determine the seasonal (monthly indexes) and then divide the data by these indices. Then using the deseasonalized data, determine the trend. Finally, you must re-seasonalize the data.

Year

Month

New Orders for Computers and Electronic Products

M-1 Money Supply

2011

1

19222

1855.6

2011

2

20727

1874.7

2011

3

24893

1892.0

2011

4

19375

1897.8

2011

5

20152

1934.3

2011

6

25075

1947.0

2011

7

18615

2001.5

2011

8

21289

2112.9

2011

9

27014

2126.0

2011

10

22179

2137.4

2011

11

20761

2172.0

2011

12

27818

2168.2

2012

1

19447

2202.3

2012

2

23043

2212.2

2012

3

26734

2228.7

2012

4

21897

2245.3

2012

5

22403

2251.0

2012

6

24942

2262.3

2012

7

19365

2314.6

2012

8

20240

2346.5

2012

9

25478

2383.6

2012

10

20790

2415.5

2012

11

20362

2423.2

2012

12

27841

2457.7

2013

1

17393

2467.6

2013

2

18725

2470.4

2013

3

22919

2474.8

2013

4

19560

2511.0

2013

5

20333

2522.0

2013

6

24619

2517.9

2013

7

18065

2545.6

2013

8

18487

2557.3

2013

9

24877

2578.8

2013

10

20410

2620.2

2013

11

20194

2622.2

2013

12

24955

2654.5

Solution

2 period, 4 period and 6 period moving averages;

(Note: you have posted more than 1 question. I have answered the 1st question. Kindly post other questions as a seperate question)

Year Month New Orders for Computers and Electronic Products M-1 Money Supply 2 period total of new orders 2 period total of money supply 2 period average of new orders 2 period average of money supply 4 period total of new orders 4 period total of money supply 4 period average of new orders 4 period average of money supply 6 period total of new orders 6 period total of money supply 6 period average of new orders 6 period average of money supply
2011 1 19,222.0 1,855.6
2011 2 20,727.0 1,874.7 39,949.0 3,730.3 19,974.5 1,865.2
2011 3 24,893.0 1,892.0 45,620.0 3,766.7 22,810.0 1,883.4
2011 4 19,375.0 1,897.8 44,268.0 3,789.8 22,134.0 1,894.9 84,217.0 7,520.1 21,054.3 1,880.0
2011 5 20,152.0 1,934.3 39,527.0 3,832.1 19,763.5 1,916.1 85,147.0 7,598.8 21,286.8 1,899.7
2011 6 25,075.0 1,947.0 45,227.0 3,881.3 22,613.5 1,940.7 89,495.0 7,671.1 22,373.8 1,917.8 129,444.0 11,401.4 21,574.0 1,900.2
2011 7 18,615.0 2,001.5 43,690.0 3,948.5 21,845.0 1,974.3 83,217.0 7,780.6 20,804.3 1,945.2 128,837.0 11,547.3 21,472.8 1,924.6
2011 8 21,289.0 2,112.9 39,904.0 4,114.4 19,952.0 2,057.2 85,131.0 7,995.7 21,282.8 1,998.9 129,399.0 11,785.5 21,566.5 1,964.3
2011 9 27,014.0 2,126.0 48,303.0 4,238.9 24,151.5 2,119.5 91,993.0 8,187.4 22,998.3 2,046.9 131,520.0 12,019.5 21,920.0 2,003.3
2011 10 22,179.0 2,137.4 49,193.0 4,263.4 24,596.5 2,131.7 89,097.0 8,377.8 22,274.3 2,094.5 134,324.0 12,259.1 22,387.3 2,043.2
2011 11 20,761.0 2,172.0 42,940.0 4,309.4 21,470.0 2,154.7 91,243.0 8,548.3 22,810.8 2,137.1 134,933.0 12,496.8 22,488.8 2,082.8
2011 12 27,818.0 2,168.2 48,579.0 4,340.2 24,289.5 2,170.1 97,772.0 8,603.6 24,443.0 2,150.9 137,676.0 12,718.0 22,946.0 2,119.7
2012 1 19,447.0 2,202.3 47,265.0 4,370.5 23,632.5 2,185.3 90,205.0 8,679.9 22,551.3 2,170.0 138,508.0 12,918.8 23,084.7 2,153.1
2012 2 23,043.0 2,212.2 42,490.0 4,414.5 21,245.0 2,207.3 91,069.0 8,754.7 22,767.3 2,188.7 140,262.0 13,018.1 23,377.0 2,169.7
2012 3 26,734.0 2,228.7 49,777.0 4,440.9 24,888.5 2,220.5 97,042.0 8,811.4 24,260.5 2,202.9 139,982.0 13,120.8 23,330.3 2,186.8
2012 4 21,897.0 2,245.3 48,631.0 4,474.0 24,315.5 2,237.0 91,121.0 8,888.5 22,780.3 2,222.1 139,700.0 13,228.7 23,283.3 2,204.8
2012 5 22,403.0 2,251.0 44,300.0 4,496.3 22,150.0 2,248.2 94,077.0 8,937.2 23,519.3 2,234.3 141,342.0 13,307.7 23,557.0 2,218.0
2012 6 24,942.0 2,262.3 47,345.0 4,513.3 23,672.5 2,256.7 95,976.0 8,987.3 23,994.0 2,246.8 138,466.0 13,401.8 23,077.7 2,233.6
2012 7 19,365.0 2,314.6 44,307.0 4,576.9 22,153.5 2,288.5 88,607.0 9,073.2 22,151.8 2,268.3 138,384.0 13,514.1 23,064.0 2,252.4
2012 8 20,240.0 2,346.5 39,605.0 4,661.1 19,802.5 2,330.6 86,950.0 9,174.4 21,737.5 2,293.6 135,581.0 13,648.4 22,596.8 2,274.7
2012 9 25,478.0 2,383.6 45,718.0 4,730.1 22,859.0 2,365.1 90,025.0 9,307.0 22,506.3 2,326.8 134,325.0 13,803.3 22,387.5 2,300.6
2012 10 20,790.0 2,415.5 46,268.0 4,799.1 23,134.0 2,399.6 85,873.0 9,460.2 21,468.3 2,365.1 133,218.0 13,973.5 22,203.0 2,328.9
2012 11 20,362.0 2,423.2 41,152.0 4,838.7 20,576.0 2,419.4 86,870.0 9,568.8 21,717.5 2,392.2 131,177.0 14,145.7 21,862.8 2,357.6
2012 12 27,841.0 2,457.7 48,203.0 4,880.9 24,101.5 2,440.5 94,471.0 9,680.0 23,617.8 2,420.0 134,076.0 14,341.1 22,346.0 2,390.2
2013 1 17,393.0 2,467.6 45,234.0 4,925.3 22,617.0 2,462.7 86,386.0 9,764.0 21,596.5 2,441.0 132,104.0 14,494.1 22,017.3 2,415.7
2013 2 18,725.0 2,470.4 36,118.0 4,938.0 18,059.0 2,469.0 84,321.0 9,818.9 21,080.3 2,454.7 130,589.0 14,618.0 21,764.8 2,436.3
2013 3 22,919.0 2,474.8 41,644.0 4,945.2 20,822.0 2,472.6 86,878.0 9,870.5 21,719.5 2,467.6 128,030.0 14,709.2 21,338.3 2,451.5
2013 4 19,560.0 2,511.0 42,479.0 4,985.8 21,239.5 2,492.9 78,597.0 9,923.8 19,649.3 2,481.0 126,800.0 14,804.7 21,133.3 2,467.5
2013 5 20,333.0 2,522.0 39,893.0 5,033.0 19,946.5 2,516.5 81,537.0 9,978.2 20,384.3 2,494.6 126,771.0 14,903.5 21,128.5 2,483.9
2013 6 24,619.0 2,517.9 44,952.0 5,039.9 22,476.0 2,520.0 87,431.0 10,025.7 21,857.8 2,506.4 123,549.0 14,963.7 20,591.5 2,494.0
2013 7 18,065.0 2,545.6 42,684.0 5,063.5 21,342.0 2,531.8 82,577.0 10,096.5 20,644.3 2,524.1 124,221.0 15,041.7 20,703.5 2,507.0
2013 8 18,487.0 2,557.3 36,552.0 5,102.9 18,276.0 2,551.5 81,504.0 10,142.8 20,376.0 2,535.7 123,983.0 15,128.6 20,663.8 2,521.4
2013 9 24,877.0 2,578.8 43,364.0 5,136.1 21,682.0 2,568.1 86,048.0 10,199.6 21,512.0 2,549.9 125,941.0 15,232.6 20,990.2 2,538.8
2013 10 20,410.0 2,620.2 45,287.0 5,199.0 22,643.5 2,599.5 81,839.0 10,301.9 20,459.8 2,575.5 126,791.0 15,341.8 21,131.8 2,557.0
2013 11 20,194.0 2,622.2 40,604.0 5,242.4 20,302.0 2,621.2 83,968.0 10,378.5 20,992.0 2,594.6 126,652.0 15,442.0 21,108.7 2,573.7
2013 12 24,955.0 2,654.5 45,149.0 5,276.7 22,574.5 2,638.4 90,436.0 10,475.7 22,609.0 2,618.9 126,988.0 15,578.6 21,164.7 2,596.4
Consider the data on new orders for computers and electronic products and the M1 money supply for the years 2011 through 2014. Year Month New Orders for Compute
Consider the data on new orders for computers and electronic products and the M1 money supply for the years 2011 through 2014. Year Month New Orders for Compute
Consider the data on new orders for computers and electronic products and the M1 money supply for the years 2011 through 2014. Year Month New Orders for Compute
Consider the data on new orders for computers and electronic products and the M1 money supply for the years 2011 through 2014. Year Month New Orders for Compute
Consider the data on new orders for computers and electronic products and the M1 money supply for the years 2011 through 2014. Year Month New Orders for Compute
Consider the data on new orders for computers and electronic products and the M1 money supply for the years 2011 through 2014. Year Month New Orders for Compute
Consider the data on new orders for computers and electronic products and the M1 money supply for the years 2011 through 2014. Year Month New Orders for Compute

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site