2 Upper tail Hypothesis test for population mean when is kno
2 Upper tail Hypothesis test for population mean when is known A stationery store wants to claim that the mean retail value of greeting cards that it has in its inventory is greater than $2.40. The population standard deviation is known =$0.64. A random sample of 64 greeting cards indicates a mean value of $2.65. Use a 0.05 level of significance.
Step 1: Specify the population value of interest
Step 2: Formulate the appropriate null and alternative hypotheses.
Step 3: Specify the desired level of significance and the sample size.
Step 4: Find the critical value and determine the rejection region. With a known , we will use z-value as the critical value. Critical Value(s) is(are): Rejection Region:
Step 5: Obtain sample evidence (sample statistic x-bar or ) and compute the test statistic z*(Standardized value of x-bar or ).
Step 6: Reach a decision and interpret the result.
Solution
1.
We are concerned about the population mean retail value of greeting cards
2.
Formulating the null and alternative hypotheses,              
               
 Ho:   u   <=   2.4  
 Ha:    u   >   2.4   [ANSWER]
************************
3.
Here, alpha = 0.05, and n = 64. [ANSWER]
*************************
4.
               
 As we can see, this is a    right   tailed test.      
               
 Thus, getting the critical z, as alpha =    0.05   ,      
 alpha =    0.05          
 zcrit =    +   1.644853627      
Thus, reject Ho when z > 1.6449. [ANSWER]
*******************************
5.
               
 Getting the test statistic, as              
               
 X = sample mean =    2.65          
 uo = hypothesized mean =    2.4          
 n = sample size =    64          
 s = standard deviation =    0.64          
               
 Thus, z = (X - uo) * sqrt(n) / s =    3.125   [ANSWER, Z STATISTIC]
*****************************      
 6.
               
 As z > 1.6449, we   REJECT THE NULL HYPOTHESIS.  
Thus, there is significant evidence that the mean retail value of greeting cards is greater than $2.40. [CONCLUSION]  
               


