Please answer with details 250 out of 360 employees agree a
Please answer with details
250 out of 360 employees agree a company project. (1) Find 90% confidence interval of the proportion of agreed employees p normal distribution: (2) Find 95% confidence interval of p:Solution
(1) phat=250/360 = 0.6944444
Given a=1-0.9=0.1, Z(0.05) = 1.645 (from standard normal table)
So the lower bound is
p - Z*sqrt(p*(1-p)/n) = 0.6944444 -1.645*sqrt(0.6944444*(1-0.6944444)/360) =0.6545071
So the upper bound is
p + Z*sqrt(p*(1-p)/n) = 0.6944444 +1.645*sqrt(0.6944444*(1-0.6944444)/360)=0.7343817
----------------------------------------------------------------------------------------------------------------
(2) Given a=1-0.95=0.05, Z(0.025) = 1.96 (from standard normal table)
So the lower bound is
p - Z*sqrt(p*(1-p)/n) = 0.6944444 -1.96*sqrt(0.6944444*(1-0.6944444)/360) =0.6468596
So the upper bound is
p + Z*sqrt(p*(1-p)/n) = 0.6944444 +1.96*sqrt(0.6944444*(1-0.6944444)/360)=0.7420292

