A random sample of 21 people employed by the Florida state a
A random sample of 21 people employed by the Florida state authority established they earned an average wage (including benefits) of $59.00 per hour. The sample standard deviation was $5.63 per hour. (Use z Distribution Table.)
A. What is the best estimate of the population mean?
B. Develop a 95% confidence interval for the population mean wage (including benefits) for these employees. (Round your answers to 2 decimal places.)
C. How large a sample is needed to assess the population mean with an allowable error of $1.00 at 90% confidence? (Round up your answer to the next whole number.)
| C. How large a sample is needed to assess the population mean with an allowable error of $1.00 at 90% confidence? (Round up your answer to the next whole number.) | 
Solution
a)
It is the sample mean, 59.00 [ANSWER]
b)
Note that              
 Margin of Error E = z(alpha/2) * s / sqrt(n)              
 Lower Bound = X - z(alpha/2) * s / sqrt(n)              
 Upper Bound = X + z(alpha/2) * s / sqrt(n)              
               
 where              
 alpha/2 = (1 - confidence level)/2 =    0.025          
 X = sample mean =    59          
 z(alpha/2) = critical z for the confidence interval =    1.96          
 s = sample standard deviation =    5.63          
 n = sample size =    21          
               
 Thus,              
 Margin of Error E =    2.407990775          
 Lower bound =    56.59200922          
 Upper bound =    61.40799078          
               
 Thus, the confidence interval is              
               
 (   56.59200922   ,   61.40799078   ) [ANSWER]
**************************
C)
Note that      
       
 n = z(alpha/2)^2 s^2 / E^2      
       
 where      
       
 alpha/2 = (1 - confidence level)/2 =    0.05  
       
 Using a table/technology,      
       
 z(alpha/2) =    1.644853627  
       
 Also,      
       
 s = sample standard deviation =    5.63  
 E = margin of error =    0.9  
       
 Thus,      
       
 n =    105.8732596  
       
 Rounding up,      
       
 n =    106   [ANSWER]


