A random variable is said to have the standard Cauchy distri
Solution
a)
y=list()
 > for(i in 1:10){
 + x=rcauchy(500)
 + y[[i]]=summary(x)
 + }
 > y
 [[1]]
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 -149.700 -1.129 -0.158 20.000 0.831 10040.000
[[2]]
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 -109.3000 -0.7500 0.1714 1.0720 1.2870 211.6000
[[3]]
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 -99.9600 -0.8090 0.1533 1.6270 1.3710 260.4000
[[4]]
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 -180.30000 -1.08200 0.00473 0.06115 1.25400 110.60000
[[5]]
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 -781.8000 -1.0300 -0.0142 -1.8890 0.9732 83.7100
[[6]]
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 -688.7000 -0.9876 -0.0452 -1.6580 0.9300 153.1000
[[7]]
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 -38.96000 -0.91290 0.09453 0.07371 1.04700 87.15000
[[8]]
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 -473.2000 -0.7780 0.0624 0.2948 1.0720 216.7000
[[9]]
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 -106.60000 -0.96270 -0.02837 -0.21190 0.85390 86.25000
[[10]]
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 -52.47000 -1.18600 -0.04586 0.39870 0.78900 166.20000
Yes, the largest and smallest number generated from the sample 500 are outliers for each time.
b)
> z=list()
 > for(i in 1:10){
 + m=matrix(rcauchy(50000), nrow=500)
 + xb=apply(m,1,mean)
 + z[[i]]=summary(xb)
 + }
 > z
 [[1]]
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 -287.10000 -0.90430 0.09803 -0.98110 1.08000 133.90000
[[2]]
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 -332.4000 -1.0660 0.0083 -0.4087 0.9121 185.0000
[[3]]
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 -279.9000 -1.2160 -0.0683 -0.5834 0.9216 421.7000
[[4]]
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 -98.2600 -1.1380 -0.0708 1.7990 0.8974 642.7000
[[5]]
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 -423.500 -0.935 -0.025 16.640 0.866 8584.000
[[6]]
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 -72.4300 -1.1030 -0.0146 2.6100 0.9645 1001.0000
[[7]]
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 -481.5000 -0.8742 0.0212 0.2480 1.0460 220.8000
[[8]]
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 -313.8000 -0.9905 -0.0387 3.0460 0.9359 1762.0000
[[9]]
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 -150.10000 -0.97250 -0.01757 0.48870 0.94460 257.90000
[[10]]
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 -57.33000 -0.89850 0.04766 0.69130 0.94000 105.80000
Yes the average seems to be more prone to extreme outliers as that of the individual observations.


