Suppose the returns on longterm government bonds are normall
Suppose the returns on long-term government bonds are normally distributed. Assume long-term government bonds have a mean return of 6.4 percent and a standard deviation of 9.1 percent.
Requirement 1: What is the probability that your return on these bonds will be less than 11.8 percent in a given year? Use the NORMDIST function in Excel ® to answer this question.
Requirement 2: What range of returns would you expect to see 95 percent of the time?
Requirement 3: What range would you expect to see 99 percent of the time?
Solution
1.
Here, we type
=NORMDIST(-11.8, 6.4, 9.1, 1)
Thus,
P(x<-11.8%) = 0.022750132 [ANSWER]
*****************
2.
As the middle area is          
           
 Middle Area = P(x1<x<x2) =    0.95      
           
 Then the left tailed area of the left endpoint is          
           
 P(x<x1) = (1-P(x1<x<x2))/2 =    0.025      
           
 Thus, the z score corresponding to the left endpoint, by table/technology, is          
           
 z1 =    -1.959963985      
 By symmetry,          
 z2 =    1.959963985      
           
 As          
           
 u = mean =    6.4      
 s = standard deviation =    9.1      
           
 Then          
           
 x1 = u + z1*s =    -11.43567226      
 x2 = u + z2*s =    24.23567226      
Thus, we expect -11.44% to 24.24%. [ANSWER]
****************************
3.
As the middle area is          
           
 Middle Area = P(x1<x<x2) =    0.99      
           
 Then the left tailed area of the left endpoint is          
           
 P(x<x1) = (1-P(x1<x<x2))/2 =    0.005      
           
 Thus, the z score corresponding to the left endpoint, by table/technology, is          
           
 z1 =    -2.575829304      
 By symmetry,          
 z2 =    2.575829304      
           
 As          
           
 u = mean =    6.4      
 s = standard deviation =    9.1      
           
 Then          
           
 x1 = u + z1*s =    -17.04004666      
 x2 = u + z2*s =    29.84004666      
Thus, we expect -17.04% to 29.84%. [ANSWER]


