A sequence an is defined recursively by a1 2 a2 3 and an
A sequence {a_n} is defined recursively by a_1 = 2, a_2 = 3 and a_n = 3a_n-1 -2a_n-2 for n > 3. Conjecture a formula for a_n and verify that your conjecture is correct.
Solution
a1 = 2
a2 = 3
an = 3an-1 – 2an-2
a3 = 3a2 – 2a1
a3 = 3*3 – 2*2 = 5
a4 = 3*5 – 2*3 = 9
a5 = 3*9 – 2*5 = 17
a6 = 3*17 – 2*9 = 33
a7 = 3*33 – 2*17 = 65
a8 = 3*65 – 2*33 = 129
The formula for n >= 3 is
an = 2an-1 – 1
a3 = 2a2 – 1
a3 = 2*3 – 1 = 5
a4 = 2*5 -1 = 9
a5 = 2*9 – 1 = 17
a6 = 2*17 – 1 = 33
a7 = 2*33 – 1 = 65
a8 = 2*65 – 1 = 129
So the formula conjectured for n >= 3, an = 2an-1 – 1 is correct.
