The average time a person spends in each visit to an online
The average time a person spends in each visit to an online social networking service is
70 minutes.
The standard deviation is 10 minutes. If a visitor is selected at random, find the probability that he or she will spend the time shown on the networking service. Assume the times are normally distributed.
The probability that a randomly selected visitor spends at least 182 minutes per visit me is what %?
 
 Refer to the table of values (Area Under the Standard Normal Distribution ) as needed. If necessary, round intermediate calculations to the nearest hundred
The probability that a randomly selected visitor spends at least 182 minutes per vis
Solution
The probability that a randomly selected visitor spends at least 182 minutes per visit me is what %?
We first get the z score for the critical value. As z = (x - u) / s, then as          
           
 x = critical value =    182      
 u = mean =    70      
           
 s = standard deviation =    10      
           
 Thus,          
           
 z = (x - u) / s =    11.2      
           
 Thus, using a table/technology, the right tailed area of this is          
           
 P(z >   11.2   ) =    0 [ANSWER]
************************************
As this is a weird answer, I think you meant that the mean is 170. In that case, if mean = 170 instead,
We first get the z score for the critical value. As z = (x - u) / s, then as          
           
 x = critical value =    182      
 u = mean =    170      
           
 s = standard deviation =    10      
           
 Thus,          
           
 z = (x - u) / s =    1.2      
           
 Thus, using a table/technology, the right tailed area of this is          
           
 P(z >   1.2   ) =    0.1151 = 11.51% [ANSWER]

