Show that the relation fx iyI fx fiy is satisfied byfz si
Show that the relation |f(x + iy)I = |f(x) +f(iy)| is satisfied byf(z) = sin z. Can you find any other functions for which it is true?
Solution
f(z)=sinz
plug z=x+iy
=> f(x+iy) = sin(x+iy)
using sin(a+B) = sinAcosB + cosAsinB
f(x+iy) = sinxcos(iy) + cosxsin(iy)
now |f(x+iy)| = |sinxcos(iy) + cosxsin(iy)|
= |sinxcosh(y) + isinh(y)cosx| ------> as cos(iy)= cosh(y) & sinh(y) = isinh(y)
= |sinx + isinh(y)| -----------(1)
and
|f(x) + f(iy)| = |sinx + sin(iy)| = |sinx + isinh(y)| ----------(2)
(1) = (2)
hence proved
