A 4m times 6m plane slab thermal conductivity k thickness L
Solution
Energy Balance
Energy gain from radiation= Energy gain Slab
Energy gain by radiation= Energy from sun radiation (Qs)+Energy from wall Radiation(Qw) -Energy from slab emissivity (Qslab)
As in problem size wall is mention large
Therefore Qs=0
Qw=ewAsTw4
s= Stefan Boltzman constant, 5.67x10-8 W/m2×K4
Qslab=epAsTs4
Energy gain Slab=Heat transfer Convection+ Heat transfer Conduction
Heat transfer Convection=hA(Ts-Ta)
Heat transfer Conduction=kA(Ts-Tl)/L
A=6x4 m2
Part A
Heat transfer Conduction=0
hA(Ts-Ta)= ewAsTw4- epAsTs4
Therefore adjusting eqn
Ta=273+217=490 K, Tw=25+273=298 K
30(Ts-490)=(0.7x(298)4-0.75x(Ts)4)x5.67x10-8
5291005291Ts-2592592592592.59+0.75(Ts)4-5520305291=0
5291005291Ts +0.75(Ts)4-2598112897883.79=0
Using numerical technique
Trapezoidal rule
Guess Ts value 480 & 490 after 4 iteration
Final Ts= 483.3 K =210.3° C
Part B
Radiation from surface to wall= Qslab=epAsTs4
=0.75x24x5.67x10-8 (217+273)4
= 5883.556 W
Convection from surface to air= hA(Ts-Ta)
= 6x24x(490-298)
= 27648 w
Heat generated by coil= -kA(Ts-Tl)/L
kA(Ts-Tl)/L+ hA(Ts-Ta)+ epAsTs4=0
Therefore
Tl= (hA(Ts-Ta)+ epAsTs4)/kA+Ts
=606.43 K
=333.43 °C


