in a population distribution a score of X 28 corresponds to
in a population distribution, a score of X = 28 corresponds to z= -1.00 and a score of x = 34 corresponds to z = -0.50. find the mean and standard deviation for the population.
Solution
Normal Distribution
 Mean ( u ) = Unknown
 Standard Deviation ( sd )= Unknown
 Normal Distribution = Z= X- u / sd ~ N(0,1)                  
When X = 28, z= -1.00
 -1.00 = 28 - U / sd
 -s.d = 28 - U
 U - s.d = 28 Eqn(1)
 
 When X = 28, z= -1.00
 -0.50 = 34 - U / sd
 -(0.50)s.d = 34 - U
 U - (0.50)s.d = 34 Eqn(2)
 
 Solving Eqn(1)- 2* Eqn(2)
 
 U - s.d = 28
 -2U + s.d = - 68
 ---------------
 - U = -40 => U = 40 , Substitute U = 40 in Eqn(1) => 40 - s.d = 28 => s.d = 12

