Suppose the force acting on a column that helps to support a
Suppose the force acting on a column that helps to support a building is a normally distributed random variable X with mean value 16.0 kips and standard deviation 1.50kips. Compute the following probabilities by standardizing and then using a standard normal curve table from the Appendix Tables. (Round your answers to four decimal places.)
(a)
P(X 16)
P(X 19)
 
 
 (c)    
P(X 10)
 
 
 (d)    
P(14 X 19)
 
 
 (e)    
P(|X 16| 1)
apendix table--- http://www.webassign.net/devorestat8/DevoreStat8_appendix_tables.swf
Solution
Normal Distribution
 Mean ( u ) =16
 Standard Deviation ( sd )=1.5
 Normal Distribution = Z= X- u / sd ~ N(0,1)                  
 a)
 P(X > 16) = (16-16)/1.5
 = 0/1.5 = 0
 = P ( Z >0) From Standard Normal Table
 = 0.5                  
 P(X < = 16) = (1 - P(X > 16)
 = 1 - 0.5 = 0.5                  
b)
 P(X > 19) = (19-16)/1.5
 = 3/1.5 = 2
 = P ( Z >2) From Standard Normal Table
 = 0.0228                  
 P(X < = 19) = (1 - P(X > 19)
 = 1 - 0.0228 = 0.9772                  
c)
 P(X < 10) = (10-16)/1.5
 = -6/1.5= -4
 = P ( Z <-4) From Standard Normal Table
 = 0                  
 P(X > = 10) = (1 - P(X < 10)
 = 1 - 0 = 1                  
d)
 To find P(a < = Z < = b) = F(b) - F(a)
 P(X < 14) = (14-16)/1.5
 = -2/1.5 = -1.3333
 = P ( Z <-1.3333) From Standard Normal Table
 = 0.09121
 P(X < 19) = (19-16)/1.5
 = 3/1.5 = 2
 = P ( Z <2) From Standard Normal Table
 = 0.97725
 P(14 < X < 19) = 0.97725-0.09121 = 0.886                  


