A tape manufacturer has a monthly fixed cost of 2000 It cost
Solution
(a) fixed cost=82,000$
variable cost=0.25x$ where x is the no of tape boxes produced
so cost function=fixed cost+variable cost
C(x)=82,000+.25x
b)Revenue function R(x)= the no of tape boxes produced x price demand function p
= x(-.00125x+7.5)
=-.00125x2+7.5x
c) profit function S(x)= Revenue function R(x)-cost functionC(x)
=-.00125x2+7.5x-82,000-.25x
=-.00125x2 +7.25x-82,000
d)Profit is maximized at the quantity of output where marginal revenue equals marginal cost
marginal revenue(MR)= dR(x)/dx ;marginal cost (MC) =dC(x)/dx
MR =-.00250x+7.5 ;MC=.25
Now putting MR=MC
-.00250x+7.5=.25
x=7.25/.0025
x=2900 this is profit maximizing quantity
and price per unit is =-.00125x2900+7.5
=3.875$/unit
selling price=3.875x2900
=11237.5 $
