Let X be continuous with pdf fx 3x2 if 0 x 1 and zero oth
Let X be continuous with pdf f(x) = 3x2 if 0 < x < 1, and zero otherwise. Find:
(a) E(X).
(b) Var(X).
(c) E(X’).
(d) E(3X – 5X2 + 1).
Solution
a)
E(X) = integral (0->1) xf(x) dx
= integral (0->1) 3x^3 dx
= (0->1) 3x^4/4 dx
= 3/4
= 0.75 Answer
b)
E(X^2) = integral (0->1) x^2f(x) dx
= integral (0->1) 3x^4 dx
= (0->1) 3x^5/5 dx
= 3/5
=0.6
Therefore ,
V(X) = E(X^2) - (E(X))^2
= 0.6 - (0.75)^2
= 0.0375 Answer
c)
E(X \') = integral (0->1) x\' f(x) dx
= integral (0->1) 3x^2 dx
= (0->1) x^3 dx
= 1 Answer
d)
E(3X-5X^2+1) = integral (0->1) (3x-5x^2+1)f(x) dx
= integral (0->1) (9x^3-15x^4+3x^2) dx
= (0->1) (9x^4/4 - 3x^5 + x^3) dx
= 9/4 - 3 +1
= 0.25 Answer


