The credit scores of 35yearolds applying for a mortgage at U
The credit scores of 35-year-olds applying for a mortgage at Ulysses Mortgage Associates are normally distributed with a mean of 670 and a standard deviation of 125.
(Round to 2 decimal places).
(a)
Find the credit score that defines the upper 15 percent.
(b)
Fifty-five percent of the customers will have a credit score higher than what value?
(c)
Within what range would the middle 60 percent of credit scores lie?
Solution
a)
Here, the left tailed area is 1-0.15= 0.85.
First, we get the z score from the given left tailed area. As          
           
 Left tailed area =    0.85      
           
 Then, using table or technology,          
           
 z =    1.036433389      
           
 As x = u + z * s,          
           
 where          
           
 u = mean =    670      
 z = the critical z score =    1.036433389      
 s = standard deviation =    125      
           
 Then          
           
 x = critical value =    799.5541737   [ANSWER]
******************
b)
Here, the left tailed area is 1-0.55= 0.45.
First, we get the z score from the given left tailed area. As          
           
 Left tailed area =    0.45      
           
 Then, using table or technology,          
           
 z =    -0.125661347      
           
 As x = u + z * s,          
           
 where          
           
 u = mean =    670      
 z = the critical z score =    -0.125661347      
 s = standard deviation =    125      
           
 Then          
           
 x = critical value =    654.2923316   [ANSWER]
******************
c)  
   
 Note that              
               
 Lower Bound = X - z(alpha/2) * s
 Upper Bound = X + z(alpha/2) * s       
               
 where              
 alpha/2 = (1 - confidence level)/2 = (1-0.60)/2 =     0.2          
 X = sample mean =    670          
 z(alpha/2) = critical z for the confidence interval =    0.841621234          
 s = sample standard deviation =    125          
              
 Thus,              
               
 Lower bound =    564.7973458          
 Upper bound =    775.2026542          
               
 Thus, the confidence interval is              
               
 (   564.7973458   ,   775.2026542   ) [ANSWER]


