Calculate the following probabilities for the following bino
Calculate the following probabilities for the following binomial distributaions.
(a) P(X=4) if n=12 and p=0.42
(b) P(x<2) if n=11 and p=0.37
Solution
a)
Note that the probability of x successes out of n trials is          
           
 P(n, x) = nCx p^x (1 - p)^(n - x)          
           
 where          
           
 n = number of trials =    12      
 p = the probability of a success =    0.42      
 x = the number of successes =    4      
           
 Thus, the probability is          
           
 P (    4   ) =    0.197254223 [ANSWER]
*****************
b)
Note that P(fewer than x) = P(at most x - 1).          
           
 Using a cumulative binomial distribution table or technology, matching          
           
 n = number of trials =    11      
 p = the probability of a success =    0.37      
 x = our critical value of successes =    2      
           
 Then the cumulative probability of P(at most x - 1) from a table/technology is          
           
 P(at most   1   ) =    0.046291724
           
 Which is also          
           
 P(fewer than   2   ) =    0.046291724 [ANSWER]

