Let the following be a joint probability mass function for t

Let the following be a joint probability mass function for the random variables X and Y.

a)Determine the marginal probability distribution of the random variables X and Y

b)Determine P(X1)

c) Determine P(Y<1.5)

d)   Are the random variables X and Y independent? Why or why not?

e)Determine the conditional probability distribution of Y given that X= 1

f)Calculate the correlation coefficient between X and Y

x

y

fxy(x,y)

0

1

1/8

1

0

1/8

1

1

1/4

2

2

1/2

x

y

fxy(x,y)

0

1

1/8

1

0

1/8

1

1

1/4

2

2

1/2

Solution

a) To find pdf of x and y

Marginal density of x
x 0 1 2 Total
p 1/8 3/8 1/2 1     
p*x 0      3/8 1      1 3/8
p*x^2 0      3/8 2      2 3/8
Variance 31/64
Marginal density of y
y 0 1 2 Total
p 1/8 3/8 1/2 1     
p*y 0      3/8 1      1 3/8
b) P(X<=1) 1/2
c) P(Y<1.5) 1/2
d) P(0,1) = 1/8
    P(X=0)P(Y=1) 3/64
Since the two are not the same x,y are not independent.
e) P(Y/x=1)
y 0 1 2
P(Y/x=1) 1/8 1/4 0     
Let the following be a joint probability mass function for the random variables X and Y. a)Determine the marginal probability distribution of the random variabl
Let the following be a joint probability mass function for the random variables X and Y. a)Determine the marginal probability distribution of the random variabl

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site