Find the exact values of sin 2u cos 2u and tan 2u using the
Find the exact values of sin 2u, cos 2u, and tan 2u using the double-angle formulas.
cos u = -4/5 /2 < u <
sin2u=
cos 2u=
tan2u=
Solution
cos u = -4/5 /2 < u <
sinu = sqrt(1- cos^2u) = sqrt(1 -(4/5)^2)
= sqrt(9/25) = 3/5 ( +ve as sin is +ve in IInd quadrant)
cos2u = 2cos^2u - 1
= 2(-4/5)^2 -1 = 32/25 -1 = 7/25
sin2u = 2sinucosu =2(3/5)(-4/5) = -24/25
tan2u = sin2u/cos2u
= (-24/25) / (7/25)
= -24/7
