An engine containing 2 moles of N2 gas undergoes a cyclic pr
Solution
number of moles n = 2
Pa = Pb = 1.62 x10 5 Pa
Pc= 1.44 x10 5 Pa
Ta = T c = 23 o C = 23 + 273 = 296 K
Tb = 60 o C = 60 + 273 = 333 K
(a). At constant volume , i.e., in isochoric process ,
Pc /Pb = Tc/Tb
(1.44 x10 5) /(1.62 x10 5) = 296 K / 333 K
0.88888 = 0.88888
Hence bc is isochoric.
(b).Q AB = nCp(Tb-Ta)
Where Cp = Specific heat at constant pressure = 3.5 R = 3.5 x 8.314 J / mol K
Substitute values you get ,Q AB = 2 x3.5x8.314 x(333-296)
= 2153.3 J
Q BC = nCv(Tc-Tb)
Where Cv = Specific heat at constant volume = 2.5 R = 2.5 x 8.314 J / mol K
Substitute values you get ,Q BC = 2 x2.5x8.314 x(296-333)
= -1538.09 J
Q CA = nRTa ln(VA/VC)
= nRTa ln(Pc/Pa) Since in isothermal process PaVA = PcVC
= 2 x 8.314 x296 xln[(1.44x10 5) /(1.62x10 5) ]
= -579.7 J
(2).W AB = Pa(VB-VA)
Volume at B is VB = nRTb/Pb
= 2x 8.314x333/(1.62 x10 5)
= 0.034179 m 3
Volume at A is VA = nRTa/Pa
= 2x 8.314x296/(1.62 x10 5)
= 0.030382 m 3
W AB = 1.62 x10 5 (VB-VA)
= 615.11 J
WBC = 0 Since in isochoric process change in volume is zero.
W CA = Q CA Since it is isothermal process
= -579.7 J
(c). Total work done W = W AB + W BC + W CA
= 35.41 J
(d). Efficiency = W /Q AB
= 35.41 /2153.3
= 0.0164
= 1.644 %
(e). Change in entropy = S + S\'
Where S = Change in entropy in AB process
AB is isobaric process.So, S = Cv ln(Tb/Ta)+ R ln(Vb/Va)
ans S \' = Change in entropy in BC process
BC is isochoric process.So, S \' = Cp ln(Tc/Tb) -R ln(Pc/Pb)

