prove the identity cos 3 cos7 sin 7 sin3 tan2SolutionThe g
prove the identity
cos 3 - cos7 / sin 7 +sin3 =tan2
Solution
The given
cos 3 - cos7 / sin 7 +sin3 =tan2
Let LHS=
cos 3 - cos7 / sin 7 +sin3
{-2sin((10)/2)sin((-4)/2)}/2sin((10)/2)cos((4)/2) (since cos c-cos d=-2sin((c+d)/2)sin((c-d)/2) and
sin c +sin d=2sin(c+d)/2 cos(c-d)/2)
LHS={-2sin((10)/2)sin((-4)/2)}/2sin((10)/2)cos((4)/2)
=-sin((-4)/2)/cos((4)/2) by simplification
=sin2/cos2 (since sin(-2)=-sin2)
=tan2
therefore LHS=RHS
