Find a general solution for the given linear system using th

Find a general solution for the given linear system using the elimination method of Section 5.2. d^2x/dt^2 - x + 5y = 0, 2x + d^2y/dt^2 + 2y = 0

Solution

Consider operator D = d/dt

d2x/dt2 - x + 5y = 0 => (D2 -1)x +5y = 0..(1)

d2y/dt2 + 2x + 2y = 0 => 2x + (D2 + 2)y = 0..(2)

Multiply (1) by 2 and (2) by (D2-1)

2(D2-1)x + 10y = 0

2(D2-1)x + (D2-1)(D2+2)y = 0

Subtracting :

10y - (D2-1)(D2+2)y = 0

=> [D4+2D2-D2 -2-10]y = 0

=> (D4 + D2 -12)y = 0

The Auxiliory equation is given by :

m4 + m2 -12 = 0

(m2)2 + m2 -12 =0

m2 = t

Then t2 + t -12 = 0

=> t2 + 4t -3t -12 = 0

=> t(t + 4) -3(t+4) = 0

=> (t+4)(t-3) = 0

t = -4, 3

=> m2 = -4, 3

=> m = +2i, -2i, +sqrt(3), -sqrt(3)

y = A cos(2t) + Bsin(2t) + Cesqrt(3)t + D e-sqrt(3)t

Now substitute this in (2)

2x + (D2 + 2)( A cos(2t) + Bsin(2t) + Cesqrt(3)t + D e-sqrt(3)t) = 0

=> 2x + D(-2Asin(2t) +2Bcos(2t) +sqrt(3)Cesqrt(3)t -sqrt(3)De-sqrt(3)t)+2( A cos(2t) + Bsin(2t) + Cesqrt(3)t + D e-sqrt(3)t) = 0

=> 2x + (-4Acos(2t) -4Bsin(2t)+3Cesqrt(3)t +3De-sqrt(3)t) + 2Acos(2t)+2Bsin(2t)+2Cesqrt(3)t+2De-sqrt(3)t = 0

=> x -Acos(2t)-Bsin(2t)+5C/2esqrt(3)t +5/2De-sqrt(3)t = 0

=> x = Acos(2t) + Bsin(2t) - 5C/2esqrt(3)t - 5/2De-sqrt(3)t

 Find a general solution for the given linear system using the elimination method of Section 5.2. d^2x/dt^2 - x + 5y = 0, 2x + d^2y/dt^2 + 2y = 0SolutionConside
 Find a general solution for the given linear system using the elimination method of Section 5.2. d^2x/dt^2 - x + 5y = 0, 2x + d^2y/dt^2 + 2y = 0SolutionConside

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site