Find a general solution for the given linear system using th
Solution
Consider operator D = d/dt
d2x/dt2 - x + 5y = 0 => (D2 -1)x +5y = 0..(1)
d2y/dt2 + 2x + 2y = 0 => 2x + (D2 + 2)y = 0..(2)
Multiply (1) by 2 and (2) by (D2-1)
2(D2-1)x + 10y = 0
2(D2-1)x + (D2-1)(D2+2)y = 0
Subtracting :
10y - (D2-1)(D2+2)y = 0
=> [D4+2D2-D2 -2-10]y = 0
=> (D4 + D2 -12)y = 0
The Auxiliory equation is given by :
m4 + m2 -12 = 0
(m2)2 + m2 -12 =0
m2 = t
Then t2 + t -12 = 0
=> t2 + 4t -3t -12 = 0
=> t(t + 4) -3(t+4) = 0
=> (t+4)(t-3) = 0
t = -4, 3
=> m2 = -4, 3
=> m = +2i, -2i, +sqrt(3), -sqrt(3)
y = A cos(2t) + Bsin(2t) + Cesqrt(3)t + D e-sqrt(3)t
Now substitute this in (2)
2x + (D2 + 2)( A cos(2t) + Bsin(2t) + Cesqrt(3)t + D e-sqrt(3)t) = 0
=> 2x + D(-2Asin(2t) +2Bcos(2t) +sqrt(3)Cesqrt(3)t -sqrt(3)De-sqrt(3)t)+2( A cos(2t) + Bsin(2t) + Cesqrt(3)t + D e-sqrt(3)t) = 0
=> 2x + (-4Acos(2t) -4Bsin(2t)+3Cesqrt(3)t +3De-sqrt(3)t) + 2Acos(2t)+2Bsin(2t)+2Cesqrt(3)t+2De-sqrt(3)t = 0
=> x -Acos(2t)-Bsin(2t)+5C/2esqrt(3)t +5/2De-sqrt(3)t = 0
=> x = Acos(2t) + Bsin(2t) - 5C/2esqrt(3)t - 5/2De-sqrt(3)t

