The following figures represent amounts of time in seconds a
The following figures represent amounts of time (in seconds) a random sample of students from this class spent watching the videos for chapter 8. At = 0.01, us this data to test the claim that the average time spent was less than the total run time of the videos (total run time = 435 seconds)
608 610 408 404 516 500
9 947 624 2 514 495
940 501 251 536 700 435
28 0 713 233 4 5
540 511 188 352 486 201
Solution
Formulating the null and alternative hypotheses,              
               
 Ho:   u   >=   435  
 Ha:    u   <   435  
               
 As we can see, this is a    left   tailed test.      
               
 Thus, getting the critical z, as alpha =    0.01   ,      
 alpha =    0.01          
 zcrit =    -   2.326347874      
               
 Getting the test statistic, as              
               
 X = sample mean =    408.7          
 uo = hypothesized mean =    435          
 n = sample size =    30          
 s = standard deviation =    268.3469383          
               
 Thus, z = (X - uo) * sqrt(n) / s =    -0.536808929          
               
 Also, the p value is              
               
 p =    0.295699802          
               
 aS Z > -2.326, and P > 0.01, we   FAIL TO REJECT THE NULL HYPOTHESIS.          
Thus, there is no significant evidence that the average time spent was less than the total run time of the videos (total run time = 435 seconds) at 0.01 level. [CONCLUSION]
*********************
Hi! Some of the data are single digit, which is unusual. If those are typo errors, please resubmit the correct version fo this question. Otherwise, I used the data you submitted. Thanks!

