Families USA a monthly magazine that discusses issues relate
Families USA, a monthly magazine that discusses issues related to health and health costs, surveyed 19 of its subscribers. It found that the annual health insurance premiums for a family with coverage through an employer averaged $11,100. The standard deviation of the sample was $920. (Use z Distribution Table.)
a. Based on this sample information, develop a 98% confidence interval for the population mean yearly premium.
b.How large a sample is needed to find the population mean within $250 at 95% confidence?
Solution
a)
Note that              
 Margin of Error E = t(alpha/2) * s / sqrt(n)              
 Lower Bound = X - t(alpha/2) * s / sqrt(n)              
 Upper Bound = X + t(alpha/2) * s / sqrt(n)              
               
 where              
 alpha/2 = (1 - confidence level)/2 =    0.01          
 X = sample mean =    11000          
 t(alpha/2) = critical t for the confidence interval =    2.55237963          
 s = sample standard deviation =    920          
 n = sample size =    19          
 df = n - 1 =    18          
 Thus,              
 Margin of Error E =    538.7115623          
 Lower bound =    10461.28844          
 Upper bound =    11538.71156          
               
 Thus, the confidence interval is              
               
 (   10461.28844   ,   11538.71156   ) [ANSWER]
*****************
b)
Note that      
       
 n = z(alpha/2)^2 s^2 / E^2      
       
 where      
       
 alpha/2 = (1 - confidence level)/2 =    0.025  
       
 Using a table/technology,      
       
 z(alpha/2) =    1.959963985  
       
 Also,      
       
 s = sample standard deviation =    920  
 E = margin of error =    250  
       
 Thus,      
       
 n =    52.02257193  
       
 Rounding up,      
       
 n =    53   [ANSWER]

