For the following find all x satisfying the given equation o
     For the following, find all x satisfying the given equation or show that no such x exists.  99x equivalence 18 (mod 31).  3x equivalence 6 (mod 9).  X^2 + x + 1 equivalence 0 (mod 7). 
  
  Solution
a)
99=93+6=6 mod 31
So equation becomes
6x=18 mod 31
6 is coprime to 31 so we can divide both sides by 6. We get
x=3 mod 31
x=31m+3 , m is any integer
b)
3x=6 mod 9
3x-6=9m
x-2=3m
So, x=2 mod 3
x=3m+2, m is any integer
c) x^2+x+1=0 mod 7
1=-6 mod 7
x^2+x-6=0 mod 7
x^2+3x-2x-6=0 mod 7
x(x+3)-2(x+3)=0 mod 7
(x+3)(x-2)=0 mod 7
x=2,-3 mod 7
x=7m+2 or 7n-3
m ,n are any integers

