Consider the following observations on bearing lifetime in h

Consider the following observations on bearing lifetime (in hours):

171.2,183.5,150.3,177.4,219.3,284.8,303.4,199.9,209.1,212.5,234.5,198.4,207.1,210.2,216.5,234.9,262.6,290.3,294.1,

301.2,308.7,309.7,312.6,314.8,152.7,156.3,164.4,172.0,172.5,173.3,184.3,186.7,189.4,193.0,194.1,204.7,212.4,196.5,

267.5,198.0,192.9,123.7,204.5,195.8,205.6,187.5,212.5,307.6

If we assume that the observations follow a normal distribution, what would be the probability of finding a bearing with a lifetime between 165 and 235 hours? Less than 200 hours? More than 300 hours?

Solution

Getting the mean, X,          
          
X = Sum(x) / n          
Sum(x) =    10454.9      
As n =    48      
Thus,          
X =    217.8104167      
          
Setting up tables,          
x   x - X   (x - X)^2  
171.2   -46.61041667   2172.530942  
183.5   -34.31041667   1177.204692  
150.3   -67.51041667   4557.656359  
177.4   -40.41041667   1633.001775  
219.3   1.489583333   2.218858507  
284.8   66.98958333   4487.604275  
303.4   85.58958333   7325.576775  
199.9   -17.91041667   320.7830252  
209.1   -8.710416667   75.87135851  
212.5   -5.310416667   28.20052517  
234.5   16.68958333   278.5421918  
198.4   -19.41041667   376.7642752  
207.1   -10.71041667   114.7130252  
210.2   -7.610416667   57.91844184  
216.5   -1.310416667   1.71719184  
234.9   17.08958333   292.0538585  
262.6   44.78958333   2006.106775  
290.3   72.48958333   5254.739692  
294.1   76.28958333   5820.100525  
301.2   83.38958333   6953.822609  
308.7   90.88958333   8260.916359  
309.7   91.88958333   8443.695525  
312.6   94.78958333   8985.065109  
314.8   96.98958333   9406.979275  
152.7   -65.11041667   4239.366359  
156.3   -61.51041667   3783.531359  
164.4   -53.41041667   2852.672609  
172   -45.81041667   2098.594275  
172.5   -45.31041667   2053.033859  
173.3   -44.51041667   1981.177192  
184.3   -33.51041667   1122.948025  
186.7   -31.11041667   967.8580252  
189.4   -28.41041667   807.1517752  
193   -24.81041667   615.5567752  
194.1   -23.71041667   562.1838585  
204.7   -13.11041667   171.8830252  
212.4   -5.410416667   29.27260851  
196.5   -21.31041667   454.1338585  
267.5   49.68958333   2469.054692  
198   -19.81041667   392.4526085  
192.9   -24.91041667   620.5288585  
123.7   -94.11041667   8856.770525  
204.5   -13.31041667   177.1671918  
195.8   -22.01041667   484.4584418  
205.6   -12.21041667   149.0942752  
187.5   -30.31041667   918.7213585  
212.5   -5.310416667   28.20052517  
307.6   89.78958333   8062.169275  
          
          
Thus, Sum(x - X)^2 =    121931.7648      
          
Thus, as           
          
s^2 = Sum(x - X)^2 / (n - 1)          
          
As n =    48      
          
s^2 =    2594.292868      
          
Thus,          
          
s =    50.93420136  

***********************

a) BETWEEN 165 AND 235:

We first get the z score for the two values. As z = (x - u) / s, then as          
x1 = lower bound =    165      
x2 = upper bound =    235      
u = mean =    217.8104167      
          
s = standard deviation =    50.93420136      
          
Thus, the two z scores are          
          
z1 = lower z score = (x1 - u)/s =    -1.036836061      
z2 = upper z score = (x2 - u) / s =    0.337486067      
          
Using table/technology, the left tailed areas between these z scores is          
          
P(z < z1) =    0.149906133      
P(z < z2) =    0.632124743      
          
Thus, the area between them, by subtracting these areas, is          
          
P(z1 < z < z2) =    0.48221861   [ANSWER]

**************************

b) LESS THAN 200:

We first get the z score for the critical value. As z = (x - u) / s, then as          
          
x = critical value =    200      
u = mean =    217.8104167      
          
s = standard deviation =    50.93420136      
          
Thus,          
          
z = (x - u) / s =    -0.349674997      
          
Thus, using a table/technology, the left tailed area of this is          
          
P(z <   -0.349674997   ) =    0.36329131 [ANSWER]

********************

C) MORE THAN 300:

We first get the z score for the critical value. As z = (x - u) / s, then as          
          
x = critical value =    300      
u = mean =    217.8104167      
          
s = standard deviation =    50.93420136      
          
Thus,          
          
z = (x - u) / s =    1.613642329      
          
Thus, using a table/technology, the right tailed area of this is          
          
P(z >   1.613642329   ) =    0.053302515 [ANSWER]


  

Consider the following observations on bearing lifetime (in hours): 171.2,183.5,150.3,177.4,219.3,284.8,303.4,199.9,209.1,212.5,234.5,198.4,207.1,210.2,216.5,23
Consider the following observations on bearing lifetime (in hours): 171.2,183.5,150.3,177.4,219.3,284.8,303.4,199.9,209.1,212.5,234.5,198.4,207.1,210.2,216.5,23
Consider the following observations on bearing lifetime (in hours): 171.2,183.5,150.3,177.4,219.3,284.8,303.4,199.9,209.1,212.5,234.5,198.4,207.1,210.2,216.5,23

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site