Find the produce for z1 and z2 please show your work Find th
Find the produce for z1 and z2
 please show your work!
Solution
z1 = sqrt3[ cos5pi/4 +jsinsinpi/4 ]
z2 = 2[cospi + jsinpi ]
In polar form z1 = sqrt(3)e^(j5pi/4)
In polar form z2 = 2e^(jpi)
Now Z = z1*z2 = 2sqrt3e^i(5pi/4+pi)
= 2sqrt(3)e^j(5pi/4 +pi)
2sqrt(3)[ cos(5pi/4 +pi) +j sin(5pi/4+pi) ]
= 2sqrt(3)[ 1/sqrt2 +j1/sqrt2]
= sqrt6 + jsqrt6
![Find the produce for z1 and z2 please show your work! Find the product for z_1 = squareroot(3)[cos (5 phi/4) + i sin (5 phi/4)] and z_2 = 2[cos(n) + i sin(n)] F Find the produce for z1 and z2 please show your work! Find the product for z_1 = squareroot(3)[cos (5 phi/4) + i sin (5 phi/4)] and z_2 = 2[cos(n) + i sin(n)] F](/WebImages/9/find-the-produce-for-z1-and-z2-please-show-your-work-find-th-998239-1761513966-0.webp)
