Let X1X2 be independent normal N31 N41 random variables resp
     Let X1.X2 be independent normal N(3,1), N(4,1) random variables, respectively. Find P[X 1 - X2 GE 1].![Let X1.X2 be independent normal N(3,1), N(4,1) random variables, respectively. Find P[X 1 - X2 GE 1].SolutionX1 ~ N ( 3,1)..MEAN = 3...VARIANCE =1...... X2~ N(  Let X1.X2 be independent normal N(3,1), N(4,1) random variables, respectively. Find P[X 1 - X2 GE 1].SolutionX1 ~ N ( 3,1)..MEAN = 3...VARIANCE =1...... X2~ N(](/WebImages/9/let-x1x2-be-independent-normal-n31-n41-random-variables-resp-998373-1761514043-0.webp) 
  
  Solution
X1 ~ N ( 3,1)..MEAN = 3...VARIANCE =1......
X2~ N(4,1)...MEAN =4 , VARIANCE =1......
 
 SO, Y(let)=X1-X2 ~ N ( -1 ,2).......MEAN= 3-4 AND VARIANCE = 1+1 =2....
 
 
 P( X1 - X2 >=1) = P ( Y >=1) = P [ ( Y - MEAN) / S.D >= 1-1/ ( SQRT(2) ) ] = P [ Z >= 0 ]
 
 here z also follows normal distribution with mean = 0 and s.d =1 i.e a standdard normal distribution.
 
 P( Z >= 0) = 1- P(Z< 0) = 0.5.....(normal distribution is symmetric)
![Let X1.X2 be independent normal N(3,1), N(4,1) random variables, respectively. Find P[X 1 - X2 GE 1].SolutionX1 ~ N ( 3,1)..MEAN = 3...VARIANCE =1...... X2~ N(  Let X1.X2 be independent normal N(3,1), N(4,1) random variables, respectively. Find P[X 1 - X2 GE 1].SolutionX1 ~ N ( 3,1)..MEAN = 3...VARIANCE =1...... X2~ N(](/WebImages/9/let-x1x2-be-independent-normal-n31-n41-random-variables-resp-998373-1761514043-0.webp)
