Prove that a perfect square must end in one of the following
Prove that a perfect square must end in one of the following pairs of digits: 00, 01, 04, 09,16, 21, 24, 25, 29, 36, 41, 44, 49, 56, 61, 64, 69, 76, 81, 84, 89, 96. [Because x^2 = (50 + x)^2 (mod 100) and.x^2 = (50 - x)^2 (mod 100), it suffices to examine the final digits of x^2 for the 26 values x = 0, 1, 2,..., 25.]
Solution
End digits number square
00 10 10x10 = 100
01 49 49x 49 = 2401
04 48 48x48 = 2304
09 47 47x47 = 2209
16 46 46x 46 = 2116
21 11 11x11 = 121
24 32 32x32 = 1024
25 15 15x15 = 225
29 23 23x23 = 529
36 44 44x44 = 1936
41 21 21x21= 441
44 12 12x12 =144
49 43 43x43 = 1849
56 16 16x16 = 256
61 31 31x31 = 961
64 42 42x42 = 1764
69 13 13x13 =169
76 24 24x24 = 576
81 41 41x41 = 1681
84 22 22x22 = 484
89 17 17x17 =289
96 14 14x14 =196
Therefore,
these perfect squares are ended with given digits.
