A bank has 1500 individual savings accounts with an average
A bank has 1,500 individual savings accounts with an average balance of $3,000 and a standard deviation of $1,200. If the bank takes a random sample of 100 accounts,
(a) what\'s the probability that the average savings for these 100 accounts will be below $2,800?
(b) how many accounts are expected to be below $2,800?
Solution
a)
We first get the z score for the critical value. As z = (x - u) sqrt(n) / s, then as          
           
 x = critical value =    2800      
 u = mean =    3000      
 n = sample size =    100      
 s = standard deviation =    1200      
           
 Thus,          
           
 z = (x - u) * sqrt(n) / s =    -1.666666667      
           
 Thus, using a table/technology, the left tailed area of this is          
           
 P(z <   -1.666666667   ) =    0.047790352 [answer]
********************
b)
a)
We first get the z score for the critical value. As z = (x - u) sqrt(n) / s, then as          
           
 x = critical value =    2800      
 u = mean =    3000      
 n = sample size =    100      
 s = standard deviation =    1200      
           
 Thus,          
           
 z = (x - u) * sqrt(n) / s =    -1.666666667      
           
 Thus, using a table/technology, the left tailed area of this is          
           
 P(z <   -1.666666667   ) =    0.047790352 [answer]
********************
b)
We first get the z score for the critical value. As z = (x - u) / s, then as          
           
 x = critical value =    2800      
 u = mean =    3000      
           
 s = standard deviation =    1200      
           
 Thus,          
           
 z = (x - u) / s =    -0.166666667      
           
 Thus, using a table/technology, the left tailed area of this is          
           
 P(z <   -0.166666667   ) =    0.433816167
Thus, we expect 100*0.433816167 = 43.3816167 to be below 2800. [ANSWER, 43.3816167]
           


