Suppose 1654 of 2056 registered voters sampled said they pla
Suppose 1,654 of 2,056 registered voters sampled said they planned to vote for the Republican candidate for president. Using the 0.95 degree of confidence, what is the interval estimate for the population proportion (to the nearest tenth of a percent)?
Solution
Note that              
               
 p^ = point estimate of the population proportion = x / n =    0.804474708          
               
 Also, we get the standard error of p, sp:              
               
 sp = sqrt[p^ (1 - p^) / n] =    0.008746738          
               
 Now, for the critical z,              
 alpha/2 =   0.025          
 Thus, z(alpha/2) =    1.959963985          
 Thus,              
 Margin of error = z(alpha/2)*sp =    0.017143291          
 lower bound = p^ - z(alpha/2) * sp =   0.787331417          
 upper bound = p^ + z(alpha/2) * sp =    0.821617999          
               
 Thus, the confidence interval is              
               
 ( 78.7% , 82.2% ) [ANSWER]

