Tank1x d2 d22 k02n12 n22 k1x d2212k1x d2 Tank1x d2 k1x d
     Tan(k_1x d/2) = [(d/2)^2 k_0^2(n_1^2 - n_2^2) - (k_1x d/2)^2]^1/2/k_1x. d/2  Tan(k_1x d/2) = -k_1x d/2/[(d/2)^2 k_0^2(n_1^2 - n_2^2) - (k_1x d/2)^2]^1/2  d = 10 mu m  n_1 = 1.505  n_2 = 1.495  V = 5.7  V = k_0 d/2 squareroot n_1^2 - n_2^2![Tan(k_1x d/2) = [(d/2)^2 k_0^2(n_1^2 - n_2^2) - (k_1x d/2)^2]^1/2/k_1x. d/2 Tan(k_1x d/2) = -k_1x d/2/[(d/2)^2 k_0^2(n_1^2 - n_2^2) - (k_1x d/2)^2]^1/2 d = 10   Tan(k_1x d/2) = [(d/2)^2 k_0^2(n_1^2 - n_2^2) - (k_1x d/2)^2]^1/2/k_1x. d/2 Tan(k_1x d/2) = -k_1x d/2/[(d/2)^2 k_0^2(n_1^2 - n_2^2) - (k_1x d/2)^2]^1/2 d = 10](/WebImages/9/tank1x-d2-d22-k02n12-n22-k1x-d2212k1x-d2-tank1x-d2-k1x-d-999125-1761514499-0.webp) 
  
  Solution
d = 10;
 n1 = 1.505;
 n2 = 1.495;
 v = 5.7;
 k0 = (2*v)/(d*(sqrt(n1^2-n2^2)));
k1x = 1:0.01:100;
x = k1x .* (d/2.0);
y1 = [];
 y2 = [];
for i = 1:length(k1x)
     n1 = sqrt(((d/2.0)^2 * k0^2 * (n1^2-n2^2)) - ((k1x(i) * (d/2.0))^2));
     d1 = k1x(i) * (d/2.0);
     y1(i) = n1 / d1;
     y2(i) = -d1 / n1;
 end
 plot(x, y1)
 hold on
plot(x, y2)
 hold off
![Tan(k_1x d/2) = [(d/2)^2 k_0^2(n_1^2 - n_2^2) - (k_1x d/2)^2]^1/2/k_1x. d/2 Tan(k_1x d/2) = -k_1x d/2/[(d/2)^2 k_0^2(n_1^2 - n_2^2) - (k_1x d/2)^2]^1/2 d = 10   Tan(k_1x d/2) = [(d/2)^2 k_0^2(n_1^2 - n_2^2) - (k_1x d/2)^2]^1/2/k_1x. d/2 Tan(k_1x d/2) = -k_1x d/2/[(d/2)^2 k_0^2(n_1^2 - n_2^2) - (k_1x d/2)^2]^1/2 d = 10](/WebImages/9/tank1x-d2-d22-k02n12-n22-k1x-d2212k1x-d2-tank1x-d2-k1x-d-999125-1761514499-0.webp)
